
Euro Bird Portal (LIFE15 PRE/ES/000002)
Design of the new database repository and data-flow

Overview
This document describes the design of the new EBP database repository and associate data-
flow system. The system is divided in two different parts: the database repository and the
API/webservices.

Architecture overview

1

Database
The database has been developed using PostgreSQL on an Amazon instance. We have chosen
PostgreSQL for several reasons:

 It is the most powerful openSource relational database.

 Can handle huge amounts data.

 Geographical objects and methods capabilities.

 Expertise among several online portals and main developers.

The Amazon services gives us the following advantages:

 Scalability. We can adapt the server capabilities to the requirements.

 Costs are adapted to the CPU, memory, bandwidth and storage requirements.

The PostgreSQL database structure with the final design of the main database tables and
relations is shown in Annex 1.

Database optimizations

The amount of data in the database will be huge in the near future. Therefore, we had to
analyse bottlenecks and try to find extra optimizations. We’ve created indices and primary
keys/foreign keys in several database tables and optimized each field.

From the beginning, it was rather clear that it could be desirable to use partitioning on tables.
Partitioning improves query performance but increases insert and update times. In our case,
since most maps are done year by year, partitioning by year gave us the best results.

API/web services

Technology
All selected technology for the EBP repository is licensed as free software. Using free software
solutions we reduce costs and we are not hardly linked to a privative solution. Moreover, all
chosen technologies are competitive, actively maintained and powerful enough to fulfil our
requirements.

The EBP repository API is deployed on a GNU/Linux server running on Apache webserver
using WSGI libraries to run Python webapps.

2

https://uwsgi-docs.readthedocs.io/en/latest/index.html
https://httpd.apache.org/

The API has been developed using the Flask micro web framework, written mainly in Python
programming language following the REST architectural style. Some other libraries have been
used to facilitate main tasks: RESTPlus (REST APIs creation), SQLAlchemy (Database access as
a SQL toolkit and Object Relational Mapper) and Authlib (Outh2 authentication).

As we identified some asynchronous tasks in the project, we had to create a queue and
messaging system to handle these jobs. As a message broker we use a RabbitMQ software and
for asynchronous task creation and scheduling we use the Celery library.

Security
We had to assure that only registered online portals can send data to the repository.

We have decided to use the OAuth 2.0 protocol for authentication and authorization with
PasswordGrant credentials for the EBP repository uses. OAuth2 is an authorization framework
that enables applications to obtain limited access to user accounts on a service. It provides
authorization flows for web and desktop applications, and mobile devices.

Services
The API should offer several operations related to main data structures:

 Species lists.

 Protocols: creation, removal and updates.

 Breeding codes list.

 Data provision: online portals data provision handling.

 Oauth2 : operations related to authorization.

Modules
Four main modules have been designed and implemented to fulfil the functional requirements:

a) Data provisions from online portals using the new EBP standard.

b) Maps creation for the demo viewer.

c) Repository management such as the administration zone, user creation and internal
visualizations (maps and graphs).

d) Metadata handling for species lists, breeding codes, audits.

3

https://oauth.net/2/grant-types/password/
https://oauth.net/2/
http://www.celeryproject.org/
https://www.rabbitmq.com/
https://authlib.org/
https://www.sqlalchemy.org/
http://flask-restplus.readthedocs.io/en/stable/
http://flask.pocoo.org/

a) Data provisions

We decided that the responsible of sending data will be the online portal and the exchange
format will be the JSON file. Online portals will do the data aggregation, standard creation and
updates/removals handling in their side. After that, they will automate the data-flow to send
to an API/web service the list of events and it's composite records.

We had to support two kind of data provisions:

1. Standard data provision: consists on sending regularly (daily, weekly or monthly) data
updates to be shown in the EBP viewer in a near real-time. Every data provision will
send new data from a concrete period with old inserts, updates or deletes,

2. Bulk data provision: sending old data using data standard from 2010 until standard
connection is established.

The online portal has to convert its own data to a JSON data provision following the standard
and send it to the API. It gets authenticated by the API and data goes through three validations
processes. The system creates an audit log where it’s possible to access to errors to be fixed
later. The first and second processes validate the format consistency, ids uniqueness, etc…

The third validation is done at database level as an asynchronous task. We send this tasks to
the processing queues because those validations require time. It checks that data is inside the
portal’s country, species code existence, etc. When the validation process is finished the online
portal can access to the audit with the validation errors.

Events and records without errors are inserted to the database linked to the partner source id
and upload id. When providing removals or modifications, previous data in the database is
modified or deleted depending on the state field added to the data provision event or record.

For the standard data provisions, the online portals have to create scheduled tasks to create
the data aggregations and send the data provisions. Depending on technological capabilities it
will be recommended to send data daily, weekly or monthly.

b) Maps creation

We’ve created a new module to aggregate data for the map viewer, adapting the previous
code. The algorithm aggregates EBP repository data from different partners at each 30x30 km
square and week and creates the different map types (occurrence, traces, counts and
phenological maps). It also creates the inter-annual cycles maps (for example “2015/16”). The
map generation process benefits from the GIS capabilities of the PostgreSQL database.

With the new near-real-time scenario, we also schedule, every week, the creation of the last
52 weeks maps. Those maps show data from the last week up to 51 weeks before.

Once data is aggregated, we upload and update the maps at the data visualization platform
CARTO. The map viewer shows the maps in the browser using the CARTO technology.

4

https://carto.com/
https://carto.com/
https://eurobirdportal.org/ebp/en/help/#maps
https://ico-apps.github.io/ebp_docs/EBP-repository.html#validation-phases
https://ico-apps.github.io/ebp_docs/EBP-repository.html#validation-phases
https://ico-apps.github.io/ebp_docs/EBP-repository.html#data-provision-structure

c) Repository management

The EBP repository also contains an administration zone. There are two different access roles:
online portal user and EBP repository admin.

The online portal user can access to the administration zone to:

 Get Oauth2 credentials.

 Access to its own partner sources and protocols.

 Get a the list of last audits from its own data provisions with information about:
provision dates, events loaded, provision mode and validation errors.

 Maps showing provided data from portal partners and some graphs with summarised
information.

The EBP repository admin can access to the administration zone to:

 Same operations as the online user but for all users and portals.

 Dashboard with information about the database state, the scheduled and asynchronous
tasks.

 User management (create, delete, role assignment).

 Overall statistics of online portals data provisions.

Example of a list of data provision audits as shown in the administration zone

5

Map visualization of the submitted Ornitho data as shown in the administration zone

Chart with the number submitted events per week as shown in the administration zone

d) Metadata handling

The API offers several operations for the online portals to help them with their data-flow
implementation.

In agreement with the the European Bird Census Council (EBCC), the EBP partnership agreed
on using the Handbook of the Birds of the World (HBW) as standard taxonomy checklists.

6

https://www.ebcc.info/

Each online portal has to map it’s own taxonomy to the HBW species codes. We added some
queries to the API to access to the species lists to simplify this mapping process.

Online portals can also access to breeding codes lists and the project type lists for the
protocol creation.

There are also some API methods to define, create and modify protocols into the EBP
repository database. Extended information can be found in the protocols section of the
documentation.

Scheduled and asynchronous task
As we have explained in the technology section, it was required to create a messaging system
to handle scheduled and asynchronous tasks.

Asynchronous tasks: time consuming tasks are sent to a processing queue to be executed
when the API is not busy. Complex data validations and bulk data processing are processed
asynchronously.

Scheduled tasks: other tasks, like map generation, are also time consuming and they should be
executed regularly. Last year and last 52 weeks maps are generated every week when weekly
data provisions are finished.

Documentation
An extended documentation wiki has been created to help online portal developers to connect
with the EBP repository API (Annex 2). We’ve also documented the API methods using the
Swagger technology. Finally, developers can also access to a set of Postman examples.

7

https://app.getpostman.com/run-collection/456579a957514dd735e7
https://swagger.io/
https://ico-apps.github.io/ebp_docs/EBP-repository.html#api-protocol-methods
https://ico-apps.github.io/ebp_docs/EBP-repository.html
https://ico-apps.github.io/ebp_docs/EBP-repository.html#protocols
https://ico-apps.github.io/ebp_docs/EBP-repository.html#api-protocol-methods

Annex 1. Final database structure (main tables and relations)

8

	Overview
	Architecture overview
	Database
	API/web services
	Technology
	Security
	Services
	Modules
	a) Data provisions
	b) Maps creation
	c) Repository management
	d) Metadata handling

	Scheduled and asynchronous task
	Documentation

	Annex 1. Final database structure (main tables and relations)

